Advances in Climate Modeling with High Performance Computing

Sandia National Laboratories Computers, Computation, Informatics and Mathematics Center Exploratory Simulation Technologies Department

Bill Spotz

U. Texas (PhD '95) NCAR ('96-'01)

- ASP, SCD

Sandia ('01-present)

Mark Taylor

NYU Courant (PhD '92)

NCAR ('92-'98)

- CGD, SCD

Los Alamos ('98-'04)

Sandia ('04-present)

The Community Climate System Model

Community Climate
 System Model (CCSM)

Managed by NCAR

 Funding sources include DOE (SciDAC)

 Atmosphere model is most computationally intense

 Community Atmospheric Model (CAM):

- Spectral Transform
- Finite Volume
- Spectral Element?

Spectral Element Atmospheric Model (SEAM)

- Spectral elements replace spherical harmonics in horizontal directions
- Coupled to the Community Atmospheric Model (CAM)
- High order (p=8) finite element method with efficient Gauss-Lobatto quadrature used to invert the mass matrix.
- Two dimensional domain decomposition: each processor contains one or more elements and the vertical columns of data associated with those elements.

A Brief History

- SEAM was developed at NCAR/CGD by Taylor and Tribbia, based on Spectral Element Ocean Model by Haidvogel and Iskandarani
- Taylor left NCAR for LANL
- Tribbia continued work on SEAM with Fournier and Zhun
- Loft and Thomas of NCAR/SCD developed new spectral element model (SEAM2, later HOMME)
- Spotz at Sandia initiated collaboration with NCAR to advance HOMME, specifically high-performance computing
- NCAR/HOMME developers expanded to Nair, St.-Cyr, Dennis, Edwards
- Sandia hired Taylor to work on HOMME collaboration

Atmospheric Dynamical Cores

Features of SEAM/HOMME

- Accuracy: can achieve same accuracy as spherical harmonic models.
- High order representation allows for high order scale selective dissipation (like hyper viscosity used in S.H.)
- Unstructured Grid: Can handle AMR
- Unstructured Grid: No pole problem, so excellent parallel scalability
- Unstructured Grid: New challenges for existing physics parameterizations?
- Local Conservation: Less oscillatory than S.H., but does not have exact local conservation (DG?)

Goal: Demonstrate Global 10km Capability on Massively Parallel Computers

DOE SCaLeS Report

 "An important long-term objective of climate modeling is to have the spatial resolution of the atmospheric and oceanic components both at ~1/10° (~ 10 km resolution at the Equator)."

Atmospheric Model

- At 10km, the atmosphere will be the dominant component of a coupled model.
- 10km is necessary to resolve regional detail of temperature and precipitation important for local and social impacts of climate change
- 10km dynamics for improved tracer advection, with physics at lower resolution
- Many forecast models use 10km regional resolution and hydrostatic equations: could replace with a single global forecast model.

HOMME on Red Storm

Max: 4TF

Projected: 6TF

Performance of 4 fixed problem sizes, on up to 6K CPUs. The annotation gives the mean grid spacing at the equator (in km) and the number of vertical levels used for each problem.

HOMME on **BG/L**

Max: 4TF

Performance of 4 fixed problem sizes, on up to 64K CPUs. The annotation gives the mean grid spacing at the equator (in km) and the number of vertical levels used for each problem.

Integration Rates

Atmosphere For Earth Simulator (AFES)

- Global spectral model (spherical harmonics: Legendre transforms, all-to-all transpositions)
- Full physics
- 10km (24TF) 57 simulated days/day

Red Storm (SEAM)

- Spectral elements: local computations and communications
- Aquaplanet (reduced physics)
- 40km (3TF) 7-30 simulated years/day
- 10km (5TF) 32-128 simulated days/day

SEAM Split Semi-Implicit Acceleration

Red Storm Demonstration Run

- Polar vortex problem: Demonstrate break-up of circumpolar jet over the north pole
- Numerical Statistics
 - 13km grid spacing, 300 levels in the vertical (1 billion grid points)
 - Integrated for 288,000 time steps using 7200 CPUs for 36 hours
 - Produced 1TB of data

Polar Vortex on Red Storm

Red Storm Demonstration Run

Isosurface and contours of potential vorticity over north pole

